Adaptive, Hands-Off Stream Mining
نویسندگان
چکیده
Sensor devices and embedded processors are becoming ubiquitous, especially in measurement and monitoring applications. Automatic discovery of patterns and trends in the large volumes of such data is of paramount importance. The combination of relatively limited resources (CPU, memory and/or communication bandwidth and power) poses some interesting challenges. We need both powerful and concise “languages” to represent the important features of the data, which can (a) adapt and handle arbitrary periodic components, including bursts, and (b) require little memory and a single pass over the data. This allows sensors to automatically (a) discover interesting patterns and trends in the data, and (b) perform outlier detection to alert users. We need a way so that a sensor can discover something like “the hourly phone call volume so far follows a daily and a weekly periodicity, with bursts roughly every year,” which a human might recognize as, e.g., the Mother’s day surge. When possible and if desired, the user can then issue explicit queries to further investigate the reported patterns. In this work we propose AWSOM (Arbitrary Window Stream mOdeling Method), which allows sensors operating in remote or hostile environments to discover patterns efficiently and effectively, with practically no user intervention. Our algorithms require limited resources and can thus be incorporated in individual sensors, possibly alongside a distributed query processing engine [CCC+02, BGS01, MSHR02]. Updates are performed in constant time, using sub-linear (in fact, logarithmic) space. Existing, state of the art forecasting methods (AR, SARIMA, GARCH, etc) fall short on one or more of these requirements. To the best of our knowledge, AWSOM is the first method that has all the above characteristics. Experiments on real and synthetic datasets demonstrate that AWSOM discovers meaningful patterns over long time periods. Thus, the patterns can also be used to make long-range forecasts, which are notoriously difficult to perform automatically and efficiently. In fact, AWSOM outperforms manually set up auto-regressive models, both in terms of long-term pattern detection and modeling, as well as by at least 10× in resource consumption.
منابع مشابه
An Architecture for Context-Aware Adaptive Data Stream Mining
In resource-constrained devices, adaptation of data stream processing to variations of data rates, availability of resources and environment changes is crucial for consistency and continuity of running applications. Context-aware and resource-aware adaptation, as a new dimension of research in data stream mining, enhances and improves distributed data stream processing tasks. Context-awareness ...
متن کاملAdaptive Spike Detection for Resilient Data Stream Mining
Automated adversarial detection systems can fail when under attack by adversaries. As part of a resilient data stream mining system to reduce the possibility of such failure, adaptive spike detection is attribute ranking and selection without class-labels. The first part of adaptive spike detection requires weighing all attributes for spiky-ness to rank them. The second part involves filtering ...
متن کاملAlgorithm to handle Concept Drifting in Data Stream Mining
Data Stream Mining is the evolving field of research. Mining continuous data streams brings unique opportunities but also new challenges. This paper will describe and evaluate the proposed classifier which uses ensemble classifier along with the boosting concept. Adaptive windowing is also used for handling the data stream. Empirical study will show that the proposed classifier takes less memor...
متن کاملInteractive self-adaptive clutter-aware visualisation for mobile data mining
There is an emerging focus on real-time data stream analysis on mobile devices. A wide range of data stream processing applications are targeted to run on mobile handheld devices with limited computational capabilities such as patient monitoring, driver monitoring, providing real-time analysis and visualisation for emergency and disaster management, real-time optimisation for courier pick-up an...
متن کاملAdaptive Stream Mining Based on Rate Control Algorithms
Wireless data sharing is the term that facilitates effective and ubiquitous wireless access and affordable mobile devices, so much of the internet applications are assessed in this context. For doing this facilitate effectively traditionally so much of techniques were introduced in recent application development process. Increase of the mobile devices network applications in streaming of this a...
متن کاملAdaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams
Make more knowledge even in less time every day. You may not always spend your time and money to go abroad and get the experience and knowledge by yourself. Reading is a good alternative to do in getting this desirable knowledge and experience. You may gain many things from experiencing directly, but of course it will spend much money. So here, by reading adaptive stream mining pattern learning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003